Transformation of 1-(Acyl)(2-haloethyl)amino-9,10-anthraquinones into 1-(2-Acyloxyethylamino)-9,10-anthraquinones

L. M. Gornostaev and M. S. Sokolova

Astaf'ev Krasnoyarsk State Pedagogical University, ul. A. Lebedevoi 89, Krasnoyarsk, 660049 Russia e-mail: gornostaev@kspu.ru

Received August 12, 2005

Abstract—Acylation of 1-(2-haloethylamino)-9,10-anthraquinones gave 1-[(2-haloethyl)(aroyl, hetaroyl, or acetyl)amino]-9,10-anthraquinones which were converted into the corresponding 1-[2-(aroyloxy, hetaroyloxy, or acetoxy)ethylamino]-9,10-anthraquinone on keeping in dimethylformamide. According to the experimental data (including those obtained by kinetic study), the transformation involves intramolecular migration of the acyl group through aziridinium or oxazolidinium intermediates.

DOI: 10.1134/S1070428006100125

1-Acylamino-9,10-anthraquinones are known to undergo base-catalyzed cyclization to naphtho[1,2,3-*de*]quinolinones (Scheme 1); here, the R¹ substituent may be both hydrogen atom and alkyl or aryl group, i.e., this substituent is not involved in the cyclization [1]. We have found that 1-[(2-haloethyl)(aroyl, hetaroyl, or acetyl)amino]-9,10-anthraquinones **Ia–Ih** obtained by acylation of 1-(2-haloethylamino)-9,10-anthraquinones are converted under analogous conditions into the corresponding 1-[2-(acyloxy)ethylamino]-9,10-anthraquinones **IIa–IIg** (Scheme 2). The transformation $I \rightarrow II$ occurs under mild conditions (20–50°C) even in the absence of a base (e.g., the transformation $Ig \rightarrow IIg$). Moreover, according to the results of kinetic studies, the rate of the transformation of benzoylamino derivative Ia into 1-(2-benzoyloxyethylamino)anthraquinone IIa remains almost unchanged over a wide pH range; these data indicate the absence of base catalysis.

Formalistically, the transformation $\mathbf{I} \rightarrow \mathbf{II}$ can be represented as a series of consecutive reactions, including, e.g., hydrolysis of amide \mathbf{I} to 1-(2-haloethylamino)anthraquinone **III** and subsequent replacement

Scheme 1.

$$\begin{split} X = \text{Cl}, \ R = \text{Ph} \ (\textbf{a}), \ 4 - \text{ClC}_6\text{H}_4 \ (\textbf{b}), \ 3 - \text{O}_2\text{NC}_6\text{H}_4 \ (\textbf{c}), \ 4 - \text{O}_2\text{NC}_6\text{H}_4 \ (\textbf{d}), \ 2 - \text{thienylcarbonyl} \ (\textbf{e}), \ 2 - \text{furylcarbonyl} \ (\textbf{f}), \ \text{Me} \ (\textbf{g}); \\ X = \text{Br}, \ R = \text{Me} \ (\textbf{h}). \end{split}$$

of the halogen atom by the liberated carboxylate ion (Scheme 3).

However, by special experiments we showed that 1-(2-chloroethylamino)-9,10-anthraquinone reacts with aromatic carboxylic acids at a much lower rate and only in the presence of bases. Another factor ensuring easy transformation of I into II may be anchimeric assistance [2] by the halogen atom and acylamino group in the α,β -positions, which facilitates formation of aziridinium intermediate IV and its subsequent transformation (Scheme 4). We did not detect N-acyl-N-(2hydroxyethyl)amino derivatives V which should be formed in this case. This result neither supports nor rules out the possibility for formation of aziridinium intermediate IV, for the subsequent transformation $V \rightarrow II$ may be fast. In addition, we found that the reaction $\mathbf{I} \rightarrow \mathbf{II}$ is intramolecular since amide Ia in aqueous DMF is converted exclusively into ester IIa even in the presence of a large excess of thiophene-2carboxylic acid. The kinetic study of the transformation $\mathbf{I} \rightarrow \mathbf{II}$ showed that the rate-determining stage is

unimolecular and that electron-acceptor substituents reduce the reaction rate: the rate constants for aroyl derivatives **Ia–Id** conform to the Hammett equation (see figure).

These results, as well as published data [2] on anchimeric assistance with formation of five-membered cyclic intermediates, suggest a probable reaction path shown in Scheme 5. Presumably, the cyclization of amides I to intermediates VI is the rate-determining stage. In this case, the reaction rate should depend on the halogen nature. In fact, the kinetic data for *N*-acetylamino derivatives I showed that the rate of the transformation of 1-[acetyl(2-bromoethyl)amino]-9,10-anthraquinone (Ih) into ester IIg was higher by a factor of 22.3 than the rate of the transformation of 2-chloroethyl-substituted analog Ig. However, the obtained data do not allow us to unambiguously choose between the two possible paths, $I \rightarrow IV \rightarrow V \rightarrow II$ and $I \rightarrow VI \rightarrow VII \rightarrow II$.

Thus we have revealed a new transformation of 1-acylamino-9,10-anthraquinones. We have to elucidate whether the observed reaction is typical of other N-(2-haloethyl) carboxamides and obtain unambiguous experimental proofs for one or another mechanism of such reactions.

EXPERIMENTAL

The ¹H NMR spectra were recorded on a Bruker DRX-500 spectrometer relative to tetramethylsilane as internal reference. The progress of reactions and the

X = Cl (a), Br (b).

purity of products were monitored by TLC on Silufol plates using tolune–acetone (10:1) as eluent. The kinetics of the transformation of amides **Ia–Id**, **Ig**, and **Ih** into esters **IIa–IId** and **IIg** were studied by spectrophotometry using a Specord UV-Vis instrument at 50°C for **Ia–Id** and 25°C for **Ig** and **Ih**. The concentration of esters **IIa–IId** and **IIg** was determined at their long-wave absorption maxima (λ 510 nm). Kinetic experiments were performed in 2-cm cells; the concentration of initial amides **Ia–Id**, **Ig**, and **Ih** was 0.5×10^{-4} M; 50% aqueous DMF, pH 4.8. The rate constants were calculated by standard procedure [3]; average values from three parallel runs for each transformation were determined. The apparent rate constants k_{ap} are given below:

Compound no.	Ia	Ib	Ic	Id	Ig	Ih
$k_{\rm ap} \times 10^4$, s ⁻¹	6.22	4.23	1.21	1.38	1.30	29.0

The transformation $Ia \rightarrow IIa$ at different pH values (4.0 to 11.6) was studied in a similar way using aqueous DMF buffers prepared from a 0.2 M solution of Na₂HPO₄ and a 0.1 M solution of citric acid [4]. The following values of log k_{ap} were obtained (k_{ap} , s⁻¹).

pН	4.0	4.8	7.6	10	11.6
$-\log k_{ap}$	3.16	3.20	3.12	3.07	3.25

We failed to isolate compounds **Ig** and **Ih** as individual substances; therefore, their transformation into ester **IIg** was studied as follows: compound **IIIa** (5.286 mg) or **IIIb** (6.129 mg) was dissolved on heating in 10 ml of acetic anhydride, the mixture was kept until the optical density at λ 400 nm no longer increased, a 0.270-ml portion of the mixture was transferred into 10 ml of 50% aqueous DMF to obtain a solution with a concentration of 0.5×10^{-4} M, and the optical density at λ 510 nm (compound **IIg**) was measured.

1-(2-Bromoethylamino)-9,10-anthraquinone (**IIIb**) was synthesized as described in [5].

1-(2-Chloroethylamino)-9,10-anthraquinone (IIIa). 1-(2-Hydroxyethylamino)-9,10-anthraquinone, 5 g (18 mmol) was dissolved in 15 ml of pyridine, the solution was cooled, and 5 ml of benzenesulfonyl chloride was added. The mixture was stirred for 20 min at 70°C and cooled, and the red precipitate was filtered off and washed with ethanol. Yield 5.07 g (95%), mp 179–180°C [5]. ¹H NMR spectrum (CDCl₃), δ , ppm: 3.65–3.80 m (4H, CH₂CH₂), 7.05–8.30 m (7H, H_{arom}), 9.98 br.s (1H, NH).

Correlation between the $-\log k_{ap}$ values and Hammett constants σ ($\rho = -0.9260$, r = 0.9891, s = 0.0225).

1-[Acyl(2-haloethyl)amino]-9,10-anthraquinones Ia–If (general procedure). A mixture of 10 mmol of 1-(2-chloroethylamino)-9,10-anthraquinone and 17 mmol of the corresponding acyl chloride in 2 ml of nitrobenzene was stirred for 30–40 h at 150°C. The mixture was cooled, and the yellow precipitate was filtered off, washed with anhydrous diethyl ether, and recrystallized from toluene.

N-(2-Chloroethyl)-*N*-(9,10-dioxo-9,10-dihydroanthracen-1-yl)benzamide (Ia). Yield 2.57 g (63%), mp 205–206°C. ¹H NMR spectrum (CDCl₃), δ , ppm: 3.76–3.89 m (2H, CH₂Cl), 4.57–4.64 m and 4.09– 4.15 m (2H, CH₂N), 6.97–8.28 (12H, H_{arom}). Found, %: C 71.10; H 4.21; N 3.56. C₂₃H₁₆ClNO₃. Calculated, %: C 70.86; H 4.10; N 3.59.

4-Chloro-*N*-(**2-chloroethyl**)-*N*-(**9,10-dioxo-9,10-dihydroanthracen-1-yl**)**benzamide** (**Ib**). Yield 2.67 g (60%), mp 202–203°C. ¹H NMR spectrum (CDCl₃), δ, ppm: 3.80-3.82 m (2H, CH₂Cl), 3.91-3.97 m and 4.40-4.49 m (2H, CH₂N), 7.30-8.22 (11H, H_{arom}). Found, %: C 65.11; H 3.52; N 3.21. C₂₃H₁₅Cl₂NO₃. Calculated, %: C 65.09; H 3.53; N 3.30.

N-(2-Chloroethyl)-*N*-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-3-nitrobenzamide (Ic). Yield 2.73 g (60%), mp 220–221°C. ¹H NMR spectrum (DMSO-*d*₆), δ, ppm: 3.71–3.80 m (2H, CH₂Cl), 4.90–3.99 m and 4.45–4.50 m (2H, CH₂N), 7.36–8.20 (11H, H_{arom}). Found, %: C 63.45; H 3.46; N 6.14. C₂₃H₁₅ClN₂O₅. Calculated, %: C 63.52; H 3.45; N 6.44.

N-(2-Chloroethyl)-*N*-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-4-nitrobenzamide (Id). Yield 2.82 g (62%), mp 218–220°C. ¹H NMR spectrum (DMSO-*d*₆), δ, ppm: 3.77–3.86 m (2H, CH₂Cl), 3.90–3.95 m and 4.45–4.51 m (2H, CH₂N), 7.43–8.22 (11H, H_{arom}). Found, %: C 63.75; H 3.46; N 6.19. $C_{23}H_{15}ClN_2O_5$. Calculated, %: C 63.52; H 3.45; N 6.44.

N-(2-Chloroethyl)-*N*-(9,10-dioxo-9,10-dihydroanthracen-1-yl)thiophene-2-carboxamide (Ie). Yield 2.69 g (65%), mp 198–200°C. ¹H NMR spectrum (DMSO- d_6), δ , ppm: 3.72–3.82 m (2H, CH₂Cl), 3.90–3.95 m (2H, CH₂NH), 6.65–6.80 d (3H, thiophene, J = 5.0 Hz), 7.50–8.37 (7H, H_{arom}). Found, %: C 63.39; H 3.46; N 3.68. C₂₁H₁₄ClNO₃S. Calculated, %: C 63.71; H 3.53; N 3.53.

N-(2-Chloroethyl)-*N*-(9,10-dioxo-9,10-dihydroanthracen-1-yl)furan-2-carboxamide (If). Yield 2.06 g (52%), mp 212–214°C. ¹H NMR spectrum (DMSO- d_6), δ , ppm: 3.72–3.82 m (2H, CH₂Cl), 3.90– 3.95 m (2H, CH₂NH), 6.60–6.70 d (3H, furan, *J* = 5.0 Hz), 7.50–8.37 (7H, H_{arom}). Found, %: C 66.47; H 3.73; N 3.97. C₂₁H₁₄ClNO₄. Calculated, %: C 66.40; H 3.68; N 3.68.

1-(2-Acyloxyethylamino)-9,10-anthraquinones IIa–IIf (general procedure). Amide Ia–If, 1 g, was added under stirring to a mixture of 20 ml of DMF and 0.4 g (2.8 mmol) of potassium carbonate, and the mixture was stirred for 3–4 h at 50°C. The mixture was diluted with 20–40 ml of water, and the red solid was separated and recrystallized from toluene.

2-(9,10-Dioxo-9,10-dihydroanthracen-1-ylamino)ethyl benzoate (IIa). Yield 0.88 g (93%), mp 167– 168°C. ¹H NMR spectrum (DMSO- d_6), δ , ppm: 3.85 q (2H, CH₂NH, J = 5.0 Hz), 4.60 t (2H, CH₂O, J =5.0 Hz), 7.45–8.20 (12H, H_{arom}), 9.91 br.t (1H, NH, J = 5.0 Hz). Found, %: C 75.38; H 4.65; N 3.56. C₂₃H₁₇NO₄. Calculated, %: C 74.39; H 4.58; N 3.77.

2-(9,10-Dioxo-9,10-dihydroanthracen-1-ylamino)ethyl **4-chlorobenzoate (IIb).** Yield 0.74 g (82%), mp 189–192°C. ¹H NMR spectrum (DMSO- d_6), δ , ppm: 3.85 q (2H, CH₂NH), 4.60 t (2H, CH₂O), 7.40– 8.30 (11H, H_{arom}), 9.91 s (1H, NH). Found, %: C 67.91; H 3.91; N 3.35. C₂₃H₁₆ClNO₃. Calculated, %: C 68.06; H 3.94; N 3.45.

2-(9,10-Dioxo-9,10-dihydroanthracen-1-ylamino)ethyl 3-nitrobenzoate (IIc). Yield 0.81 g (85%), mp 175–176°C. ¹H NMR spectrum (DMSO- d_6), δ , ppm: 3.88 q (2H, CH₂NH, J = 5.5 Hz), 4.62 t (2H, CH₂O, J = 5.5 Hz), 7.50–8.40 (11H, H_{arom}), 9.91 br.t (1H, NH, J = 5.5 Hz). Found, %: C 66.90; H 3.90; N 6.56. C₂₃H₁₆N₂O₆. Calculated, %: C 66.34; H 3.84; N 6.61.

2-(9,10-Dioxo-9,10-dihydroanthracen-1-ylamino)ethyl 4-nitrobenzoate (IId). Yield 0.78 g (83%), mp 200–201°C. ¹H NMR spectrum (DMSO- d_6), δ , ppm: 3.88 q (2H, CH₂NH, J = 5.5 Hz), 4.62 t (2H, CH₂O, J = 5.5 Hz), 7.50–8.40 (11H, H_{arom}), 9.90 br.t (1H, NH, J = 5.5 Hz). Found, %: C 66.30; H 3.86; N 6.52. C₂₃H₁₆N₂O₆. Calculated, %: C 66.34; H 3.84; N 6.61. **2-(9,10-Dioxo-9,10-dihydroanthracen-1-ylamino)**ethyl thiophene-2-carboxylate (IIe). Yield 0.68 g (72%), mp 150–152°C. ¹H NMR spectrum (DMSO-*d*₆), δ , ppm: 3.83 q (2H, CH₂NH, *J* = 5.0 Hz), 4.53 t (2H, CH₂O, *J* = 5.0 Hz), 7.30–8.20 (10H, H_{arom}), 9.91 br.t (1H, NH, *J* = 5.0 Hz). Found, %: C 66.65; H 3.94; N 3.80. C₂₁H₁₅NO₄S. Calculated, %: C 69.80; H 4.15; N 3.87.

2-(9,10-Dioxo-9,10-dihydroanthracen-1-ylamino)ethyl furan-2-carboxylate (IIe). Yield 0.76 g (80%), mp 157–158°C. ¹H NMR spectrum (DMSO- d_6), δ , ppm: 3.80 q (2H, CH₂NH), 4.50 t (2H, CH₂O), 6.70– 8.20 (10H, H_{arom}), 9.85 br.s (1H, NH). Found, %: C 68.91; H 4.09; N 3.95. C₂₁H₁₅NO₅. Calculated, %: C 70.04; H 4.34; N 4.05.

2-(9,10-Dioxo-9,10-dihydroanthracen-1-ylamino)ethyl acetate (IIg). *a*. A solution of 2.85 g (10 mmol) of compound IIIa in 6 ml of acetic anhydride was heated to the boiling point over a period of 5 min. The mixture was cooled and poured onto ice, and the red precipitate was filtered off, washed with ethanol, and purified by recrystallization from toluene.

b. Following an analogous procedure, compound **IIg** was obtained from bromo derivative **IIIb**. Yield 2.62 g (85%), mp 160–161°C. ¹H NMR spectrum (DMSO-*d*₆), δ , ppm: 2.10 s (3H, CH₃); 3.63 q (2H, CH₂N, *J* = 6.0 Hz); 4.35 t (2H, CH₂O, *J* = 6.0 Hz); 7.35–7.60 m, 7.54–7.77 m, and 8.19–8.3 m (7H, H_{arom}); 9.87 br.s (1H, NH). Found, %: C 69.70; H 4.78; N 4.57. C₁₈H₁₅NO₄. Calculated, %: C 69.90; H 4.85; N 4.53.

This study was performed under financial support by the Astaf'ev Krasnoyarsk State Pedagogical University (project no. 24-05-1 F/P).

REFERENCES

- Gorelik M.V., *Khimiya antrakhinonov i ikh proizvodnykh*. (Chemistry of Anthraquinones and Their Derivatives), Moscow: Khimiya, 1983, p. 155.
- March, J., Advanced Organic Chemistry. Reactions, Mechanisms, and Structure, New York: Wiley, 1985. Translated under the title Organicheskaya khimiya, Moscow: Mir, 1987, vol. 2, p. 29.
- Zhdanov, Yu.A. and Minkin, V.I., *Korrelyatsionnyi analiz* v organicheskoi khimii (Correlation Analysis in Organic Chemistry), Rostov-on-Don: Rostov. Gos. Univ., 1966, p. 470.
- 4. Perel'man, V.I., *Kratkii spravochnik khimika* (Brief Chemist's Handbook), Moscow: Khimiya, 1964, p. 330.
- 5. Fokin, E.P., Russkikh, S.A., and Russkikh, V.V., *Izv. Sib. Otd. Akad. Nauk, Ser. Khim.*, 1965, no. 11, p. 121.